Self-embeddings of doubled affine Steiner triple systems

نویسندگان

  • Thomas A. McCourt
  • Justin Z. Schroeder
چکیده

Given a properly face two-coloured triangulation of the graph Kn in a surface, a Steiner triple system can be constructed from each of the colour classes. The two Steiner triple systems obtained in this manner are said to form a biembedding. If the systems are isomorphic to each other it is a self-embedding. In the following, for each k ≥ 2, we construct a self-embedding of the doubled affine Steiner triple system AG(k, 3) in a nonorientable surface. We also make use of a construction due to Grannell, Griggs and Širáň to obtain a biembedding of AG(k, 3) in a nonorientable surface that is not a self-embedding for k > 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-embeddings of Hamming Steiner triple systems of small order and APN permutations

The classification, up to isomorphism, of all self-embedding monomial power permutations of Hamming Steiner triple systems of order n = 2m − 1 for small m, m ≤ 22, is given. As far as we know, for m ∈ {5, 7, 11, 13, 17, 19}, all given self-embeddings in closed surfaces are new. Moreover, they are cyclic for all m and nonorientable at least for all m ≤ 19. For any non prime m, the nonexistence o...

متن کامل

Characterization of affine Steiner triple systems and Hall triple systems

It is known that a Steiner triple system is projective if and only if it does not contain the four-triple configuration C14. We find three configurations such that a Steiner Electronic Notes in Discrete Mathematics 29 (2007) 17–21 1571-0653/$ – see front matter © 2007 Elsevier B.V. All rights reserved. www.elsevier.com/locate/endm doi:10.1016/j.endm.2007.07.004 triple system is affine if and on...

متن کامل

Embedding Steiner triple systems into Steiner systems S(2, 4, v)

We initiate a systematic study of embeddings of Steiner triple systems into Steiner systems S(2; 4; v). We settle the existence of an embedding of the unique STS(7) and, with one possible exception, of the unique STS(9) into S(2; 4; v). We also obtain bounds for embedding sizes of Steiner triple systems of larger orders. c © 2003 Elsevier B.V. All rights reserved.

متن کامل

Face Two-colourable Triangulations of K 13

Face two-colourable triangular embeddings of complete graphs Kn correspond to biembeddings of Steiner triple systems. Such embeddings exist only if n is congruent to 1 or 3 modulo 6. In this paper we present the number of these embeddings for n = 13.

متن کامل

Surface embeddings of Steiner triple systems

A Steiner triple system of order n (STS(n)) is said to be embeddable in an orientable surface if there is an orientable embedding of the complete graph Kn whose faces can be properly 2-coloured (say, black and white) in such a way that all black faces are triangles and these are precisely the blocks of the STS(n). If, in addition, all white faces are triangular, then the collection of all white...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2016